DECISION

<table>
<thead>
<tr>
<th>Date</th>
<th>30 June 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application code</td>
<td>APP202396</td>
</tr>
<tr>
<td>Application type</td>
<td>To import for release and/or release from containment any new organism under section 34 of the Hazardous Substances and New Organisms Act 1996</td>
</tr>
<tr>
<td>Applicant</td>
<td>Hawke’s Bay Regional Council</td>
</tr>
<tr>
<td>Date application received</td>
<td>17 February 2015</td>
</tr>
<tr>
<td>Date of Hearing and Consideration</td>
<td>10 June 2015</td>
</tr>
<tr>
<td>Considered by</td>
<td>A decision-making committee of the Environmental Protection Authority (the Committee): Dr John Taylor (Chair), Dr Kerry Laing, Damian Stone</td>
</tr>
<tr>
<td>Purpose of the application</td>
<td>To introduce the honeysuckle stem-boring beetle, Oberea shirahatai Ohbayashi (Coleoptera: Cerambycidae), as part of a biological control programme against the weed Japanese honeysuckle (Lonicera japonica)</td>
</tr>
<tr>
<td>The new organism approved</td>
<td>Oberea shirahatai Ohbayashi, 1956 (Honeysuckle stem-borer or longhorn beetle)</td>
</tr>
</tbody>
</table>

1. Summary of decision

1.1 Application APP202396 to import for release and/or release from containment *Oberea shirahatai* Ohbayashi, 1956 (honeysuckle stem-boring beetle) was lodged under section 34 of the Hazardous Substances and New Organisms (HSNO) Act 1996 (the Act).

1.2 The application was considered in accordance with the relevant provisions of the Act and of the HSNO (Methodology) Order 1998 (the Methodology).

1.3 The Committee has approved the application without controls in accordance with section 38(1)(a) of the Act.

1 The Committee referred to in this decision is the subcommittee that has made the decision on the applications under delegated authority in accordance with section 18A of the Act.
2. Application process

Application receipt

2.1 The application was formally received for processing on 17 February 2015.

Purpose of the application

2.2 The applicant, Hawke's Bay Regional Council, sought approval to release *Oberea shirahatai* Ohbayashi, 1956 (honeysuckle stem-boring/longhorn beetle) as a biological control agent (BCA) for Japanese honeysuckle (*Lonicera japonica*).

Public notification

2.3 Section 53(1)(b) of the Act requires that an application under section 34 of the Act must be publicly notified by the Environmental Protection Authority (EPA).

2.4 The application was publicly notified by placing a notice on the EPA website on 3 March 2015.

2.5 In accordance with section 53(4) of the Act, letters or emails were sent notifying the Minister for the Environment, the Ministry for Primary Industries (MPI), the Department of Conservation (DOC), and other government departments, crown entities, and local authorities who have expressed an interest in being notified about applications for non-genetically modified new organisms. Māori organisations, non-government organisations and stakeholders who have expressed an interest in being notified about applications for non-genetically modified new organisms were also directly notified. All these parties had an opportunity to comment on the application in accordance with section 58(1)(c) of the Act and clause 5 of the Methodology.

2.6 Section 59(1)(c) of the Act requires an application to be open for the receipt of submissions for 30 working days from the date of public notification. The application was open for submissions for 31 working days until 17 April 2015. The timeframe for the close of the submission period was waived under section 59 of the Act. The period to receive submissions was increased by one day because the end date for submissions was inadvertently advised to Māori organisations and other non-genetically modified new organism interested groups to be 17 April 2015.

Submissions from members of the public

2.7 Submissions in support of the application were received from Horizons Regional Council, Northland Regional Council, Nursery and Garden Industry of New Zealand, Greater Wellington Regional Council, Te Rūnanga o Ngāi Tahu, Bay of Plenty Regional Council and Otago Regional Council.

2.8 Two submissions opposing the application were received from Mr Clinton Care and Dr Cliff Mason. Mr Care submitted that the honeysuckle stem-borer should not be released without testing; otherwise it may kill native trees, plants and cause damage to native species. Dr Mason was concerned about the potential damage new organisms may cause to the biological integrity of New Zealand and that the role of the honeysuckle stem-borer in the ecology of the weed is not well understood.
Comments from MPI and DOC

2.9 In accordance with section 58(1)(c) of the Act, the Ministry for Primary Industries (MPI) and the Department of Conservation (DOC) were advised of, and provided with the opportunity to comment on, the application.

2.10 MPI did not make any comments on the application.

2.11 DOC supported the application to introduce the honeysuckle stem-borer to control Japanese honeysuckle in New Zealand. David Havell (Technical Advisor) submitted that the weed has significant impacts on wetlands, forest margins and low growing vegetation, and it invades and smothers native trees, shrubs and grasslands from transport corridors where it establishes initially. Mr Havell also noted that the weed is the subject of DOC eradication projects in the West Coast, Southland and Rangitoto Island, and control programmes in the Hawke’s Bay, Northland and Manawatu-Horowhenua.

2.12 The Committee is satisfied that the comments from DOC have been considered in making this decision.

Reports providing advice to the Committee

2.13 The EPA Staff Assessment Report was provided under section 58(1)(a) of the Act. It was published on the EPA website and the applicant and submitters were informed of its availability on 12 May 2015.

2.14 Ngā Kaihautū Tikanga Taiao (NKTT) chose not to prepare a report on the application.

Hearing

2.15 Two submitters, Cliff Mason and Ngāi Tahu, requested the opportunity to speak to their submission at a hearing. Section 60(c) of the Act requires that a hearing be held if a person who has made a submission stated in that submission that he or she wishes to be heard.

2.16 Section 59(1)(d) of the Act requires that the hearing commence not more than 30 working days after the closing date for submissions. The applicant was not available for a hearing the week of 25-29 May 2015, and requested that the timeframe be waived to enable the hearing to be held on a more suitable date. The timeframe was waived, and the hearing was held on 10 June 2015 at the Willeston Conference Centre, level 7, 22 – 28 Willeston Street, Wellington.

2.17 The applicant was represented by Darin Underhill (Hawke’s Bay Regional Council), Dr Quentin Paynter (Landcare Research) and Dr Richard Hill (Richard Hill & Associates)

2.18 Mr Underhill gave a presentation on the history and introduction of Japanese honeysuckle to New Zealand and its contemporary impact on biodiversity and ecological systems, and status as a pest plant species in the Hawke’s Bay region. Mr Underhill’s presentation also discussed the threat the weed has to various habitats such as peat bogs, forest margins, wet lands, scrublands and restoration planting stands.

2.19 Quentin Paynter outlined the broad benefits of biological control, and discussed specific examples of biocontrol successes in New Zealand. Dr Paynter’s presentation also summarised the host range testing that was completed on the honeysuckle stem-borer and discussed the lack of a native
analogue(s) to the beetle in New Zealand. The presentation also discussed the risk of other weeds replacing Japanese honeysuckle if populations decline due to biocontrol.

2.20 Dr Cliff Mason, pathologist, presented his submission. Dr Mason noted that there is limited information on the population dynamics of the honeysuckle stem-borer; in addition to limited information being available on the degree of damage it causes Japanese honeysuckle populations in native habitats. He questioned whether the host range testing conducted on non-target species considered all possible effects as some may be unexpected or not considered in contemporary testing methodology.

2.21 Gerry Coates, Ngāi Tahu HSNO Committee, noted in his presentation that Ngāi Tahu supports a “soft” approach to controlling weeds and pests in general. He also noted that Ngāi Tahu supports the outcomes of the Māori Reference Group (MRG) report and supports reference to the cultural principles identified by the MRG in the application and Staff Assessment Report. Mr Coates also noted that Māori are concerned about what the unintentional impacts might be of introducing new biocontrol organisms, however, he considered that host testing gives some assurance towards alleviating concerns of possible non-target effects.

2.22 The hearing was closed on 10 June 2015.

2.23 Specific points raised by submitters (either in their submission or during the hearing) are addressed where appropriate throughout this decision.

2.24 The Committee would like to thank all people who submitted the information used in making this decision. Public submissions provide a focus for the Committee on points that need clarification, and the Committee found the submissions and the applicants’ responses very helpful in its consideration of the application.

Information available for the consideration

2.25 The information available for the consideration comprised:
- the application
- the EPA Staff Assessment Report
- comments received from DOC
- submissions
- information obtained during the hearing.

2.26 The Committee considered that it had sufficient information to assess the application. The Committee waived any requirements where the application may not have met legislative information requirements.

Matters for consideration

2.27 The Committee considered the application in accordance with section 38 of the Act, taking into account the matters specified in sections 36 and 37, relevant matters in Part 2 of the Act, and the Methodology.

2.28 Each point is addressed in the following sections of this decision.
3. **Organism description**

3.1 The organism proposed for release is

- **Class:** Insecta
- **Order:** Coleoptera
- **Family:** Cerambycidae
- **Genus species:** *Oberea shirahatai* Ohbayashi, 1956 (*O. shirahatai*)
- **Common name:** Honeysuckle stem-boring beetle, also known as honeysuckle stem-borer or honeysuckle longhorn beetle

3.2 The honeysuckle stem-borer feeds on Japanese honeysuckle foliage and lays eggs into holes that the females chew into stems of the plant. Once the larvae hatch, they bore into stems which can cause stem dieback.

4. **Inseparable organisms**

4.1 No inseparable organisms associated with *O. shirahatai* were identified.

5. **Assumptions for risk assessment**

5.1 The Committee noted that there is uncertainty about whether or not *O. shirahatai* will successfully establish, disperse throughout New Zealand, and have an impact on the target species. The Committee considered that if *O. shirahatai* does not establish, there will not be any significant effects (adverse or beneficial) from the release. Conversely, if *O. shirahatai* establishes successfully and disperses widely, any potential effects will be at their greatest. Therefore, the Committee considered the minimum standards and assessed the risks, costs, and benefits of releasing *O. shirahatai*, working on the assumption that *O. shirahatai* will establish and disperse widely.

6. **Minimum Standards**

6.1 The Committee considered whether *O. shirahatai* meets the minimum standards as specified in section 36 of the Act; specifically whether *O. shirahatai* could:

- *(a)* cause any significant displacement of any native species within its natural habitat; or
- *(b)* cause any significant deterioration of natural habitats; or
- *(c)* cause any significant adverse effects on human health and safety; or
- *(d)* cause any significant adverse effects to New Zealand’s inherent genetic diversity; or
- *(e)* cause disease, be parasitic, or become a vector for human, animal, or plant disease, unless the purpose is to import or release an organism to cause disease, be a parasite, or a vector for disease.
Potential to cause displacement of any native species within its natural habitat

6.2 The Committee considered the potential for *O. shirahatai* to displace native species within their natural habitats. The Committee considered that this could occur if *O. shirahatai* fed on native species (non-target feeding), or removed a primary food source for native birds or invertebrates.

6.3 The Committee noted that taxonomic analysis showed that *O. shirahatai* will not attack native plant species since Japanese honeysuckle belongs to the taxonomic order Dipsacales, and there are no native plants that belong to this order in New Zealand.

6.4 The Committee also noted that there are no specialist or native invertebrate species that are exclusively associated with Japanese honeysuckle plants in New Zealand.

6.5 The Committee concluded that *O. shirahatai* is not likely to cause any significant displacement of any native species within its natural habitat.

Potential to cause deterioration of natural habitats

6.6 The Committee considered the potential for *O. shirahatai* to cause deterioration of natural habitats, observing that this could occur if *O. shirahatai* fed on native or valued species (i.e. non-target feeding).

6.7 The Committee noted that taxonomic analysis and host range testing showed that *O. shirahatai* has a narrow host range and therefore is very unlikely to attack native or valued plant species. The Committee also noted that a reduction in vigour and abundance of Japanese honeysuckle would likely result in an improvement in natural habitats rather than deterioration. Further, any suppression of Japanese honeysuckle would likely occur gradually, and may vary from site to site.

6.8 The Committee concluded that *O. shirahatai* is not likely to cause any significant deterioration of natural habitats.

Potential to cause adverse effects on human health and safety

6.9 The Committee considered the potential for *O. shirahatai* to cause adverse effects on human health and safety, noting *O. shirahatai* is not known to pose any risks to people.

6.10 The Committee concluded that *O. shirahatai* is not likely to cause significant adverse effects on human health and safety.

Potential to cause adverse effects on New Zealand’s inherent genetic diversity

6.11 The Committee considered the potential for *O. shirahatai* to cause adverse effects on New Zealand’s inherent genetic diversity.

6.12 The Committee noted that no native or specialist species have been recorded as being exclusively associated with Japanese honeysuckle plants.

6.13 The Committee noted that none of the longhorn beetle species which are occasionally associated with Japanese honeysuckle plants are closely related to *O. shirahatai*. The Committee noted therefore that
there is minimal opportunity for hybridisation or any adverse impacts on genetic diversity of its native longhorn beetles.

6.14 The Committee concluded that *O. shirahatai* is not likely to cause any significant adverse effect to New Zealand’s inherent genetic diversity.

Potential to cause disease, be parasitic, or become a vector for disease

6.15 The Committee considered the potential for *O. shirahatai* to cause disease, be parasitic, or become a vector for disease, resulting in damage to species other than Japanese honeysuckle.

6.16 The Committee noted that *O. shirahatai* is not known to cause disease or become a vector for animal, plant or human disease in its native habitat.

6.17 The Committee concluded that *O. shirahatai* is not likely to cause disease, be parasitic, or become a vector for disease for plants other than the target Japanese honeysuckle.

Conclusion on the minimum standards

6.18 The Committee was satisfied that *O. shirahatai* meets the minimum standards set out in section 36 of the HSNO Act.

7. **Ability of the organisms to establish a self-sustaining population and ease of eradication**

7.1 In accordance with sections 37 of the Act and clauses 10(e) and (f) of the Methodology, the Committee took into consideration the ability of *O. shirahatai* to form undesirable self-sustaining populations, and the ease of eradication of such populations.

7.2 The Committee noted that the intention of the importation and release of *O. shirahatai* is to establish self-sustaining populations, in order to control the weed Japanese honeysuckle. Further they considered that in order for a self-sustaining population of *O. shirahatai* to be undesirable, it would need to be causing undesirable adverse effects.

7.3 The Committee concluded that it is highly improbable that *O. shirahatai* would form an undesirable self-sustaining population, as it is highly improbable that *O. shirahatai* will cause adverse effects if released into the New Zealand environment.

7.4 The Committee noted that it would be very difficult to eradicate *O. shirahatai* in the event that an undesirable self-sustaining population did establish.

8. **Identification and assessment of potentially significant adverse effects**

8.1 The Committee considered the potential risks and costs of the release of *O. shirahatai*, including any potentially significant adverse effects on the environment, human health and safety, society and communities, the market economy, and Māori culture, traditions, and the principles of the Treaty of Waitangi (Te Tiriti o Waitangi).
Adverse effects caused by non-target feeding and oviposition

8.2 The Committee considered the potential for *O. shirahatai* to cause adverse effects through non-target feeding and oviposition; that is feeding and completing life cycles on either native, or valued ornamental, agricultural or horticultural plants other than Japanese honeysuckle.

8.3 The Committee noted that it is highly improbable that *O. shirahatai* will attack and complete life cycles on native New Zealand species. Taxonomic analysis has shown that Japanese honeysuckle is in the Caprifoliaceae family which is within the order Dipsacales. The Committee noted that there are no native species in this order and therefore there are no native species that are closely related to Japanese honeysuckle in New Zealand. The Committee concluded that any adverse effects on native species as a result of *O. shirahatai* will be negligible.

8.4 The Committee noted that extensive host range testing in accordance with best practice has been undertaken to examine the plants on which *O. shirahatai* can survive and reproduce. The testing demonstrated that host plants for *O. shirahatai* are limited to those plants within the sub-family Caprifolieae (family Caprifoliaceae). Further, it was demonstrated that *O. shirahatai* has a strong preference for feeding and ovipositing on Japanese honeysuckle compared to other plants tested.

8.5 The host range testing that was conducted on six ornamental honeysuckle species in the sub-family Caprifolieae showed that *O. shirahatai* feeds on all these species to varying degrees and oviposits on Japanese honeysuckle (*Lonicera japonica*) and *Leycesteria formosa* to a comparable degree. Ovipositing on *L. × americana*, *L. × heckrotti* and *L. periclymenum* was significantly less compared to Japanese honeysuckle plants, and none of the larvae on the tested non-target honeysuckle species apart from Japanese honeysuckle survived beyond 120 days. The Committee considered that this suggests that none of the tested non-target species is likely to support breeding populations of *O. shirahatai*. The Committee considered that incidental feeding damage on some of the tested non-target species may occur infrequently, such as when Japanese honeysuckle is grown in close proximity to other honeysuckles, and that the impacts of any non-target feeding will be minimal.

8.6 The Committee considered the high incidence of feeding and oviposition on *Leycesteria formosa*, which was comparable to the levels of attack on Japanese honeysuckle, and noted that this species is included as a pest plant in a number of regional councils’ pest plant management strategy documents. Therefore the Committee was not concerned about the possible feeding on *Leycesteria formosa* by *O. shirahatai*. The Committee concluded that any adverse effects on ornamental honeysuckle species as a result of the release of *O. shirahatai* will be negligible.

Adverse effects caused by interference with New Zealand’s ecological values

8.7 The Committee considered the potential for *O. shirahatai* to cause adverse effects by interfering with New Zealand’s ecological values if ecological relationships, including trophic webs, were altered significantly. The Committee noted that trophic or food webs are a succession of organisms in an ecological community that are linked to each other through the transfer of energy and nutrients. The addition (or removal) of a species in a given ecosystem will impact on the trophic web at that site.
Therefore the Committee considered the potential impacts from the introduction of *O. shirahatai* and the removal of Japanese honeysuckle plants on local trophic webs.

8.8 The Committee noted from a survey of insect fauna associated with Japanese honeysuckle populations at 33 sites in New Zealand that native and exotic longhorn beetle species were rarely or occasionally found on Japanese honeysuckle plants. These beetles were considered to not be exclusively associated with Japanese honeysuckle since they may have been accidentally collected from vegetation near or in close proximity to Japanese honeysuckle populations. Thus none of the identified longhorn beetle species share a similar lifestyle niche or feed only on Japanese honeysuckle. Furthermore, the Committee noted that *O. shirahatai* is considered to be associated with Japanese honeysuckle plants only given its specific host range in its native habitat underpinned by host range testing.

8.9 As a result, there are no beetle species in New Zealand that act as native analogues. The Committee noted that *O. shirahatai* will only rarely or occasionally come across other longhorn beetle species in its host range. This, the Committee considered, is unlikely to lead to higher incidences of predation or parasitism of longhorn beetles if *O. shirahatai* is introduced in New Zealand and starts building large populations on Japanese honeysuckle.

8.10 The Committee noted that the reduction of Japanese honeysuckle plants as a result of the introduction of *O. shirahatai* will be gradual. In addition, there are no specialised invertebrates known to be exclusively associated with Japanese honeysuckle, or birds exclusively reliant on Japanese honeysuckle for food. Therefore the Committee concluded that a reduction in abundance and vigour of Japanese honeysuckle will not result in adverse effects on trophic webs.

8.11 The Committee concluded that any adverse effects on New Zealand’s ecological values resulting from the release of *O. shirahatai* will be negligible.

Potential adverse effects on Māori culture, traditions, and Te Tiriti o Waitangi

8.12 The Committee took into account the possible effects on the relationship of Māori and their culture and traditions with their ancestral lands, water, sites, waahi tapu, valued flora and fauna, and other taonga, and the principles of the Treaty of Waitangi (Te Tiriti o Waitangi).

8.13 The Committee noted that the applicant engaged with Māori via the EPA’s Te Herenga network and a Maori Reference Group (MRG) seeking engagement and information about potential impacts on Māori culture and traditions. The Committee considers the application to be broadly consistent with the principles of the Treaty of Waitangi (Te Tiriti o Waitangi).

8.14 The Committee noted that no risks to native or taonga species, ecosystems and traditional Māori values, practices, health and well-being were identified in the application, or through the public submissions. After assessing all the information, the Committee did not identify any adverse effects on Māori culture, traditions, and Te Tiriti o Waitangi.

2 Te Herenga is made up of Māori resource and environmental managers, practitioners, or experts who represent their iwi, hapū, or Māori organisation on matters of relevance to the activities and decision making of the EPA.
the relationship of Māori and their culture and traditions with their ancestral lands, water, sites, waahi tapu, valued flora and fauna, and other taonga.

9. Identification and assessment of potentially significant beneficial effects

9.1 The Committee considered the potential benefits of the release of *O. shirahatai*, including any potentially significant beneficial effects on the environment, human health and safety, society and communities, the market economy, and Māori culture, traditions, and the principles of the Treaty of Waitangi (Te Tiriti o Waitangi).

9.2 In doing so, the Committee noted that *O. shirahatai* is intended to be a biocontrol agent for Japanese honeysuckle, acting to reduce the abundance and vigour of this weed.

Japanese honeysuckle in New Zealand

9.3 The Committee noted that Japanese honeysuckle (*Lonicera japonica*) is a high priority weed for DOC since it is present in 370 DOC administered sites and at least 39 high priority biodiversity units have high abundance of, or are in close proximity to, Japanese honeysuckle infestations.

9.4 The Committee noted that Japanese honeysuckle is widely distributed throughout the North Island and northern parts of the South Island. The Committee noted further that the weed is very abundant in northern Hawke’s Bay, Gisborne, Bay of Plenty, parts of the Waikato and Taupa basins and the greater Wellington region. The weed is likely to have first spread through dumping activities of garden waste since the plant was initially cultivated as an ornamental in gardens and parks. It establishes efficiently in open habitats and areas of low growing vegetation such as transport corridors, wastelands, near wetlands and herbaceous margins of forests from where it spreads into woody vegetation.

9.5 The Committee noted that Japanese honeysuckle is a tough, creeping plant that clammers over wild and cultivated native and desirable vegetation, and forms curtains of thick growth that impair native and desirable young vegetation in forest understories.

9.6 The Committee noted that Japanese honeysuckle populations can presently only be controlled by physical and chemical methods, and that removal in sensitive and valued habitats such as wetlands, scrubland, ravines and gorges is complicated by non-target effects of herbicides and inaccessibility of Japanese honeysuckle infestations. Furthermore, the Committee noted that it is estimated that about 95% of Japanese honeysuckle infested areas are not controlled by chemical/physical methods because those infestations are either challenging to conventional control methods or they are unknown to DOC, regional councils and other territorial authorities.

9.7 The Committee noted that there is limited information presently available on the actual or projected increase in the degree and rate of infestations of Japanese honeysuckle in New Zealand and elsewhere. The Committee recommended that qualitative or quantitative information that demonstrate weed dispersal should be considered as important components in future applications, however, the Committee acknowledged that applicants have limited access to quality information because unitary/regional territorial authorities have little or no historical data on environmental weeds.
The Committee noted the first releases of a biocontrol agent for Japanese honeysuckle, *Limenitis glorifica* (the Honshu white admiral butterfly), occurred in the Waikato and Auckland regions in October 2014. The Committee further noted that *L. glorifica* will take some time to establish in the environment and build populations that are large enough to impact on Japanese honeysuckle populations. The Committee noted that the applicant did not provide information to demonstrate the combined efficacy of *L. glorifica* and *O. shirahatai* on Japanese honeysuckle and therefore could not make an assessment of proposed synergistic effects to compromise the weed. The Committee however acknowledged this to be a result of the lack of data on the combined effects of the two agents in their native habitat.

Potential benefits from *O. shirahatai* feeding and completing life cycles on Japanese honeysuckle

9.9 The applicant argued that *O. shirahatai* will feed on Japanese honeysuckle foliage and female beetles will lay their eggs in stems after which larvae will burrow in the stems leading to stem dieback. This is likely to lead to reductions in Japanese honeysuckle biomass, and diminish dispersal via above-ground runners and rhizomes.

9.10 The Committee noted that *O. shirahatai* is likely to control Japanese honeysuckle in New Zealand since the beetle originates from the native habitat of the weed where it attacks vegetative components of the plant and is able to overcome the plant's anti-herbivore defenses. The Committee also noted that host range testing showed that *O. shirahatai* has strong preference for Japanese honeysuckle over and above the tested non-target plants.

9.11 The Committee noted that although the applicant presented minimal quantitative or qualitative information on the levels of damage that *O. shirahatai* causes Japanese honeysuckle in either its native habitat or contained trials, the potential long-term environmental benefits to biodiversity and conservation values that may follow the release of *O. shirahatai* were considered to be significant. The Committee considered that *O. shirahatai* would lead to these benefits by reducing the level of vegetative growth and vigour of plants.

9.12 The Committee noted in the submission from DOC that natural ecological processes and biodiversity in wetlands, dune-wetland and forest margins as well as low growing vegetation in areas suitable for Japanese honeysuckle infestation are at risk due to canopy overgrowth of the weed.

Benefits to the environment from reduced vigour of Japanese honeysuckle

9.13 The Committee considered a reduction in vigour of Japanese honeysuckle could result in other consequential benefits for the environment including:

- reduced establishment of new Japanese honeysuckle plants
- increased potential for native seedlings to establish at or near Japanese honeysuckle infestation sites
- restoration of natural ecological processes and improved biodiversity at Japanese honeysuckle infestation sites.
9.14 The Committee noted that control by *L. glorifica* and *O. shirahatai* of some or all of the approximately 95% of Japanese honeysuckle infested areas that are presently unmanaged will result in significant benefits to biodiversity and conservation values at minimal cost and no harm to receiving environmental systems.

9.15 The Committee considered that those benefits were likely to occur, and would be minor to moderate in effect. The Committee concluded that the benefits to the environment from a reduction in vigour of Japanese honeysuckle would be significant (*non-negligible*).

Benefit to market economy from reduced vigour of Japanese honeysuckle

9.16 The Committee noted that successful biocontrol of Japanese honeysuckle will benefit the market economy by reducing costs to land owners and land/conservation managers (regional/unitary authorities and DOC) to control the weed.

9.17 The Committee noted that requirements for landowners to control Japanese honeysuckle vary from region to region. In addition, weed control operations undertaken by regional authorities and DOC often target specific sites, rather than individual weed species. Consequently it is difficult to quantify the financial impact of Japanese honeysuckle control at present. However the Committee noted that the cost of controlling Japanese honeysuckle is ongoing, and likely to increase with increasing size and spread of infestations.

9.18 Therefore while the Committee considered that economic benefits are likely to occur, the Committee could not make a determination on the magnitude or possible effects of any economic benefits on a national scale.

10. Weighing of beneficial and adverse effects

10.1 The Committee concluded that the potential risks and costs of releasing *O. shirahatai* are negligible, while the potential benefits are non-negligible.

10.2 Therefore the Committee found that it was evident that the benefits outweighed the risks of releasing *O. shirahatai*.

11. Achieving the purpose of the Act

11.1 The purpose of the Act is to protect the environment, and the health and safety of people and communities, by preventing or managing the adverse effects of hazardous substances and new organisms (section 4 of the Act).

11.2 In order to achieve the purpose of the Act, when considering the application the Committee recognised and provided for the following principles (section 5) of the Act:

- the safeguarding of the life-supporting capacity of air, water, soil and ecosystems
- the maintenance and enhancement of the capacity of people and communities to provide for their own economic, social and cultural well-being and for the reasonably foreseeable needs of future generations.
11.3 The Committee took into account the following matters when considering the application in order to achieve the purpose of the Act (sections 6, 7 and 8 of the Act):

- the sustainability of all native and valued introduced flora and fauna
- the intrinsic value of ecosystems
- public health
- the relationship of Māori and their culture and traditions with their ancestral lands, water, sites, waahi tapu, valued flora and fauna, and other taonga
- the economic and related benefits and costs of using a particular hazardous substance or new organism
- New Zealand’s international obligations
- the need for caution in managing adverse effects where there is scientific and technical uncertainty about those effects
- the principles of the Treaty of Waitangi (Te Tiriti o Waitangi).

11.4 The Committee is satisfied that this decision is consistent with the purpose of the Act and the above principles and matters. Any substantive issues arising from the legislative criteria and issues raised by submitters have been discussed in the preceding sections of this decision.

12. Decision

12.1 After reviewing all of the information contained in the application, the Committee was satisfied that the application met the requirements of section 34 of the Act. In any event, in accordance with section 59(3)(a)(ii), the Committee waives any information requirement that has not been met.

12.2 The Committee considered that the threshold for approval under section 38 of the Act has been met. It is satisfied that the organism meets the minimum standards set out in section 36 of the Act, and that the beneficial effects of the organism outweigh the adverse effects of the organism, taking into account all of the following:

- all the effects of the organism and any inseparable organisms
- the matters in section 37 of the Act
- the relevant matters in Part 2 of the Act
- the Methodology.

12.3 The Committee decided to approve the import for release and/or release from containment of *Oberea shirahatai* Ohbayashi, 1956 (honeysuckle longhorn/stem-boring beetle) under section 38(1)(a) of the Act. The Committee noted that in accordance with section 38(2) of the Act, the approval has been granted without controls.

12.4 The Committee noted that under section 38(3) of the Act, if *O. shirahatai* has not been released within five years of the date of this decision, this approval for release will lapse. However, any person may apply before the expiry of the time limit for an extension of that time limit for a further period of up to five years.
12.5 The Committee has waived the requirement under section 38(4) of the Act, to notify the Authority of the release of *O. shirahatai*.

12.6 The Committee would like to thank everyone who provided information that has been used in making this decision.

Dr John Taylor
Chair, Decision Making Committee
Environmental Protection Authority

Date 30 June 2015
<table>
<thead>
<tr>
<th>Organism</th>
<th>Approval code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oberea shirahatai Ohbayashi, 1956 (Coleoptera: Cerambycidae)</td>
<td>NOR100153</td>
</tr>
</tbody>
</table>